Computer programming

A programming language isimages-1 formal computer language or constructed language designed to communicate instructions to a machine, particularly a computer. Programming languages can be used to create programs to control the behavior of a machine or to express algorithms.

The earliest known programmable machine preceded the invention of the digital computer and is the automatic flute player described in the 9th century by the brothers Musa in Baghdad, “during the Islamic Golden Age”.[1] From the early 1800s, “programs” were used to direct the behavior of machines such as Jacquard looms and player pianos.[2] Thousands of different programming languages have been created, mainly in the computer field, and many more still are being created every year. Many programming languages require computation to be specified in an imperative form (i.e., as a sequence of operations to perform), while other languages use other forms of program specification such as the declarative form (i.e. the desired result is specified, not how to achieve it).

The description of a programming language is usually split into the two components of syntax (form) and semantics (meaning). Some languages are defined by a specification document (for example, the C programming language is specified by an ISO Standard), while other languages (such as Perl) have a dominant implementation that is treated as a reference. Some languages have both, with the basic language defined by a standard and extensions taken from the dominant implementation being common.

Definitions

A programming language is a notation for writing programs, which are specifications of a computation or algorithm.[3] Some, but not all, authors restrict the term “programming language” to those languages that can express all possible algorithms.[3][4] Traits often considered important for what constitutes a programming language include:

Function and target
A computer programming language is a language used to write computer programs, which involve a computer performing some kind of computation[5] or algorithm and possibly control external devices such as printers, disk drives, robots,[6] and so on. For example, PostScript programs are frequently created by another program to control a computer printer or display. More generally, a programming language may describe computation on some, possibly abstract, machine. It is generally accepted that a complete specification for a programming language includes a description, possibly idealized, of a machine or processor for that language.[7] In most practical contexts, a programming language involves a computer; consequently, programming languages are usually defined and studied this way.[8] Programming languages differ from natural languages in that natural languages are only used for interaction between people, while programming languages also allow humans to communicate instructions to machines.
Abstractions
Programming languages usually contain abstractions for defining and manipulating data structures or controlling the flow of execution. The practical necessity that a programming language support adequate abstractions is expressed by the abstraction principle;[9] this principle is sometimes formulated as a recommendation to the programmer to make proper use of such abstractions.[10]
Expressive power
The theory of computation classifies languages by the computations they are capable of expressing. All Turing complete languages can implement the same set of algorithms. ANSI/ISO SQL-92 and Charity are examples of languages that are not Turing complete, yet often called programming languages.[11][12]
Markup languages like XML, HTML or troff, which define structured data, are not usually considered programming languages.[13][14][15] Programming languages may, however, share the syntax with markup languages if a computational semantics is defined. XSLT, for example, is a Turing complete XML dialect.[16][17][18] Moreover, LaTeX, which is mostly used for structuring documents, also contains a Turing complete subset.[19][20]

The term computer language is sometimes used interchangeably with programming language.[21] However, the usage of both terms varies among authors, including the exact scope of each. One usage describes programming languages as a subset of computer languages.[22] In this vein, languages used in computing that have a different goal than expressing computer programs are generically designated computer languages. For instance, markup languages are sometimes referred to as computer languages to emphasize that they are not meant to be used for programming.[23]

Another usage regards programming languages as theoretical constructs for programming abstract machines, and computer languages as the subset thereof that runs on physical computers, which have finite hardware resources.[24] John C. Reynolds emphasizes that formal specification languages are just as much programming languages as are the languages intended for execution. He also argues that textual and even graphical input formats that affect the behavior of a computer are programming languages, despite the fact they are commonly not Turing-complete, and remarks that ignorance of programming language concepts is the reason for many flaws in input formats.[25]

History

Elements

Design and implementation Edit

Programming languages share properties with natural languages related to their purpose as vehicles for communication, having a syntactic form separate from its semantics, and showing language families of related languages branching one from another.[51][52] But as artificial constructs, they also differ in fundamental ways from languages that have evolved through usage. A significant difference is that a programming language can be fully described and studied in its entirety, since it has a precise and finite definition.[53] By contrast, natural languages have changing meanings given by their users in different communities. While constructed languages are also artificial languages designed from the ground up with a specific purpose, they lack the precise and complete semantic definition that a programming language has.

Many programming languages have been designed from scratch, altered to meet new needs, and combined with other languages. Many have eventually fallen into disuse. Although there have been attempts to design one “universal” programming language that serves all purposes, all of them have failed to be generally accepted as filling this role.[54] The need for diverse programming languages arises from the diversity of contexts in which languages are used:

Programs range from tiny scripts written by individual hobbyists to huge systems written by hundreds of programmers.
Programmers range in expertise from novices who need simplicity above all else, to experts who may be comfortable with considerable complexity.
Programs must balance speed, size, and simplicity on systems ranging from microcontrollers to supercomputers.
Programs may be written once and not change for generations, or they may undergo continual modification.
Programmers may simply differ in their tastes: they may be accustomed to discussing problems and expressing them in a particular language.
One common trend in the development of programming languages has been to add more ability to solve problems using a higher level of abstraction. The earliest programming languages were tied very closely to the underlying hardware of the computer. As new programming languages have developed, features have been added that let programmers express ideas that are more remote from simple translation into underlying hardware instructions. Because programmers are less tied to the complexity of the computer, their programs can do more computing with less effort from the programmer. This lets them write more functionality per time unit.[55]

Natural language programming has been proposed as a way to eliminate the need for a specialized language for programming. However, this goal remains distant and its benefits are open to debate. Edsger W. Dijkstra took the position that the use of a formal language is essential to prevent the introduction of meaningless constructs, and dismissed natural language programming as “foolish”.[56] Alan Perlis was similarly dismissive of the idea.[57] Hybrid approaches have been taken in Structured English and SQL.

A language’s designers and users must construct a number of artifacts that govern and enable the practice of programming. The most important of these artifacts are the language specification and implementation.

Specification Edit
Main article: Programming language specification
The specification of a programming language is an artifact that the language users and the implementors can use to agree upon whether a piece of source code is a valid program in that language, and if so what its behavior shall be.

A programming language specification can take several forms, including the following:

An explicit definition of the syntax, static semantics, and execution semantics of the language. While syntax is commonly specified using a formal grammar, semantic definitions may be written in natural language (e.g., as in the C language), or a formal semantics (e.g., as in Standard ML[58] and Scheme[59] specifications).
A description of the behavior of a translator for the language (e.g., the C++ and Fortran specifications). The syntax and semantics of the language have to be inferred from this description, which may be written in natural or a formal language.
A reference or model implementation, sometimes written in the language being specified (e.g., Prolog or ANSI REXX[60]). The syntax and semantics of the language are explicit in the behavior of the reference implementation.
Implementation Edit
Main article: Programming language implementation
An implementation of a programming language provides a way to write programs in that language and execute them on one or more configurations of hardware and software. There are, broadly, two approaches to programming language implementation: compilation and interpretation. It is generally possible to implement a language using either technique.

The output of a compiler may be executed by hardware or a program called an interpreter. In some implementations that make use of the interpreter approach there is no distinct boundary between compiling and interpreting. For instance, some implementations of BASIC compile and then execute the source a line at a time.

Programs that are executed directly on the hardware usually run several orders of magnitude faster than those that are interpreted in software.[citation needed]

One technique for improving the performance of interpreted programs is just-in-time compilation. Here the virtual machine, just before execution, translates the blocks of bytecode which are going to be used to machine code, for direct execution on the hardware.

Proprietary languages Edit

Although most of the most commonly used programming languages have fully open specifications and implementations, many programming languages exist only as proprietary programming languages with the implementation available only from a single vendor, which may claim that such a proprietary language is their intellectual property. Proprietary programming languages are commonly domain specific languages or internal scripting languages for a single product; some proprietary languages are used only internally within a vendor, while others are available to external users.

Some programming languages exist on the border between proprietary and open; for example, Oracle Corporation asserts proprietary rights to some aspects of the Java programming language, and Microsoft’s C# programming language, which has open implementations of most parts of the system, also has Common Language Runtime (CLR) as a closed environment.

Many proprietary languages are widely used, in spite of their proprietary nature; examples include MATLAB and VBScript. Some languages may make the transition from closed to open; for example, Erlang was originally an Ericsson’s internal programming language.

Usage Edit

Thousands of different programming languages have been created, mainly in the computing field.[61] Software is commonly built with 5 programming languages or more.[62]

Programming languages differ from most other forms of human expression in that they require a greater degree of precision and completeness. When using a natural language to communicate with other people, human authors and speakers can be ambiguous and make small errors, and still expect their intent to be understood. However, figuratively speaking, computers “do exactly what they are told to do”, and cannot “understand” what code the programmer intended to write. The combination of the language definition, a program, and the program’s inputs must fully specify the external behavior that occurs when the program is executed, within the domain of control of that program. On the other hand, ideas about an algorithm can be communicated to humans without the precision required for execution by using pseudocode, which interleaves natural language with code written in a programming language.

A programming language provides a structured mechanism for defining pieces of data, and the operations or transformations that may be carried out automatically on that data. A programmer uses the abstractions present in the language to represent the concepts involved in a computation. These concepts are represented as a collection of the simplest elements available (called primitives).[63] Programming is the process by which programmers combine these primitives to compose new programs, or adapt existing ones to new uses or a changing environment.

Programs for a computer might be executed in a batch process without human interaction, or a user might type commands in an interactive session of an interpreter. In this case the “commands” are simply programs, whose execution is chained together. When a language can run its commands through an interpreter (such as a Unix shell or other command-line interface), without compiling, it is called a scripting language.[64]

Measuring language usage Edit
Main article: Measuring programming language popularity
It is difficult to determine which programming languages are most widely used, and what usage means varies by context. One language may occupy the greater number of programmer hours, a different one have more lines of code, and a third may consume the most CPU time. Some languages are very popular for particular kinds of applications. For example, COBOL is still strong in the corporate data center, often on large mainframes;[65][66] Fortran in scientific and engineering applications; Ada in aerospace, transportation, military, real-time and embedded applications; and C in embedded applications and operating systems. Other languages are regularly used to write many different kinds of applications.

Various methods of measuring language popularity, each subject to a different bias over what is measured, have been proposed:

counting the number of job advertisements that mention the language[67]
the number of books sold that teach or describe the language[68]
estimates of the number of existing lines of code written in the language – which may underestimate languages not often found in public searches[69]
counts of language references (i.e., to the name of the language) found using a web search engine.
Combining and averaging information from various internet sites, langpop.com claims that in 2013 the ten most popular programming languages are (in descending order by overall popularity): C, Java, PHP, JavaScript, C++, Python, Shell, Ruby, Objective-C and C#.[70]

Taxonomies Edit

For more details on this topic, see Categorical list of programming languages.
There is no overarching classification scheme for programming languages. A given programming language does not usually have a single ancestor language. Languages commonly arise by combining the elements of several predecessor languages with new ideas in circulation at the time. Ideas that originate in one language will diffuse throughout a family of related languages, and then leap suddenly across familial gaps to appear in an entirely different family.

The task is further complicated by the fact that languages can be classified along multiple axes. For example, Java is both an object-oriented language (because it encourages object-oriented organization) and a concurrent language (because it contains built-in constructs for running multiple threads in parallel). Python is an object-oriented scripting language.

In broad strokes, programming languages divide into programming paradigms and a classification by intended domain of use, with general-purpose programming languages distinguished from domain-specific programming languages. Traditionally, programming languages have been regarded as describing computation in terms of imperative sentences, i.e. issuing commands. These are generally called imperative programming languages. A great deal of research in programming languages has been aimed at blurring the distinction between a program as a set of instructions and a program as an assertion about the desired answer, which is the main feature of declarative programming.[71] More refined paradigms include procedural programming, object-oriented programming, functional programming, and logic programming; some languages are hybrids of paradigms or multi-paradigmatic. An assembly language is not so much a paradigm as a direct model of an underlying machine architecture. By purpose, programming languages might be considered general purpose, system programming languages, scripting languages, domain-specific languages, or concurrent/distributed languages (or a combination of these).[72] Some general purpose languages were designed largely with educational goals.[73]

A programming language may also be classified by factors unrelated to programming paradigm. For instance, most programming languages use English language keywords, while a minority do not. Other languages may be classified as being deliberately esoteric or not.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s